Journal of Organometallic Chemustry 124 (1977) 1-12

- Elsevier Sequoia S.A, Lausanne - Pranted in The Netherlands

```
THE ATTEMPTED WITTIG REACTIOQ OF SELENOPHOSPHORANES HITH KETONES:
THE FORMATION OF 2-SELENOSUBSTITUTED KETONES
N Perragnami*, J. V. Comasseto, R Rodrigues and T J Brocksom*
Departamento de Química Fundamental do Instituto de Química da
Unıversidade de São Paulo, Calxa Postal, 20 780.
São Paulo - Bras2l
(Recerved August 18th, 1976)
```

Sumary Two d-phenylselenophosphoranes (III R=k or Me) were allowed to react with cyclohexanone giving instead of the expected olefinic Wittig product the corresponding 2-phenylselenocyclohexanone (VI). Tre reaction pathuay has been demonstrated to 1 nvolve nucleophilic substitution on selenim by the ketone enolate, the leaving group being the selenium free phosphorane (I) This reaction 18 shown to be general for seven more ketones, thus indicating its preparative potential.

[^0]2

In view of chese resuits, and of the literature reports
describing the Wittig reaction of a-alkoxy and a-aryluxy phosphoranes [2-4] and their thio-analogs [5] with ketones, we had expected that the reaction of selerophosphoranes (III) wath ketones would also give vanylic selenides*. Subsequent bydrolysis would then complece a general one-carbon atom homologation sequence.

fowever the reaction between the selenophosphoranes (II), and a series of ketones produced \mathbf{z}-phenylseleno ketones instead. In this paper we report the results

[^1]of our study of this reaction in which we demonstrate the reaction pathway and show its syathetic potential

Results and discussion

The reaction of the selenophosphoranes (III), prepared by either method, wath cyclohexanone under the usual conditions gave an 807 2solated yield of 2-phenylselenocyclohexanone (VI) together with the selenium free phosphonium salt (IV) (in almost quantitative gield)

Abstract

$$
\mathrm{R}=\mathrm{H}_{5} \mathrm{CH}_{3}
$$

The precipitation of (IV) can be most easily observed when (III) is obtained from (II) and $n-\mathrm{BuL}_{1}$, and is instantaneous at room temperature, showing that the reaction $2 s$ very rapid. The ketonic product was compared with an authentic sample obtained by treating cy=lohexanone enolate whth $\operatorname{PhSeBr}[7,8]$.

This unexpected result can be rationalized as follows:

Owing to the lover reactivity of ketones in comparison with aldehydes, the selenophosphorane (III), anstead of adding to the carboayl grour abstracts a proton from the ketone (step a), forming its enolate (VII) and the selenophosphonium salt (II). In view of the lack of exact pR_{a} data for phosphonium salts (IX), it is hard to predict the posirion of this equilibrium. The enolate (VII) then attacks the Se atom of (II), by nucleophilic substitutior giving the 2-phenylselenoketone (VI) and the Se-free phosphorane (I) (step b). This step 15 analogous to that involved in the preparation of authentic (VI) starting from (VII) and PhSeBr, differing only in the rather remarkable displacement of a non-stabilized phosphorane as the leaving group. Analogous behavior also has been obseryed in the reactions of 2-silylphosphonium sales with nucleophiles $[10,11]$ under fairly mild conditions*. The preference of enolate atcack at the $S e$ atom of (II), instead of participating in an aldol condensation, $2 s$ supported by the propensity of the selenium aton to suffer nucleophzinc substitution reactions and the weakness of the C-Se bond (58 keal/ mol [13]). Proton exchange (step c) completes the sequence, this equilibrium being shifted to the right due to the stabilization of the 2-seleno-enolate (UII by che selenuw orbitals, and the insolubity of the selenive free phosphonm salt (IV).

The proposed pathway was proved by imvestigating the individual steps in the reaction with cyclohexanone, as madicated in the

1) Reaction of cyciohexanone enolate (VII), fram cyclohexanone and iPI ${ }_{2} \mathrm{NLi}_{\mathrm{i}}$. with the selemophosphorcinn sait fin: Bent

2) Reaction of 2-phenylselenocyciohexanone (VI) with $\mathrm{Pb}_{3} \mathrm{P}^{-\mathrm{CH}_{2}}$ (I)

Both reactions gave results irentical to those obtained
in the mann reaction, to be specific 2 -phenylseleno cyclohexanone (VI) was isolated $2 n 80 z$ geld and the $52 m p l e$ phosphonim salt (IV) in almost quanticative yxeld.

The generality of the reaction then was investigated using a series of cyclic and acyclic ketones. The table sumarizes the ylelds and the analytical and spectral data of the products obtained.

It is interestang to note that all the ketones studied follow the same reaction pathway, whereas in the wittis reaction, which vorks well with most ketones, it is known that cyelopentenome and acetophenone are prone
of the less substituted selenium deravative $\left(3.2\right.$ at 28° and $9: 1$ at 10°, as determined by NHR integration). This can be attributed to the formation of the kinetic enolate with the phosphozane base and this process obviously is temperatu dependent.
then che starting selenophosphoranes (III) were prepared via
cransylidation, it was observed (in some runs) that the presence of the insoluble phosphonium salt (IV) lowered the final yield of the 2-selenoketones, and filtracion vas cherffore adopted as standard procedure This suggests that the two phosphonium salts (II) and (IV) can competefor the ketone enolate, (II) producing (VI) as already discussed, and (IV) regenerating the phosphorane (which then reacts with the ketone in a normal Wittig reaction In the case of acetophenone, we observed by NMR the formation of small quantities of the olefin ($\mathrm{IX}, \mathrm{Ph}\left(\mathrm{CH}_{3}\right) \mathrm{C=CH} 2$), and in separate experiments acetophenone enolate was allowed to react with triphenylmethylphosphonium bromide, producing the same olefin (IX). In the other cases the corresponding olefin was not observed, probably due to its volatility.

CONCLUSIOX

Although proton exchange also occurs in the Wittig reaction, this is to our howledge the first example of a subsequent reaction between che enolate and the phosphonium sait The results obtained dewonstrate three interesting facets which are emphasized by the extreme rapidity of the overall process the phenylseleno group on the ylide carbon dictates enolate formation of all the ketoncs studied, the enolates formed all prefer nucleophilic substitution on selenium to the aldol condensation, and methylenerriphenylphosphorane can be an effective leaving group under very mild conditions. However the results raise more questions than answers, especially the position of the first equilibrium and the basicity / nucleophilicity of the a-selenophosphorane. These, and other questions, will te the subject of future investigations

EXPERTMEMTAL SECTION

General

Melting points were determined on a Kofler hot stage apparatus
and are uncorrected NMR spectra vere run on a Varian T60 spectrometer using tetramethylsilane as internal standart and CCI_{4} as solvent. Infrared spectra were recorded on a Perkin-Elmer 457-A spectrometer. (Selenophenyl)rethyltriphenylphosphonium bromide, selenophenol and phenylselenengl bromide were prepared as described previously [1]. The products were purified by horizoncal evaporarive distillation on a Blichi Kugelrohrofen. Analytical samples were obtained by subsequent preparative thin lager chromatography.

1) Reaction of phenglselenophosphorane (III) with ketones - Typlcal procedure
a) Vaa transylidation

To a solution of methylenetiriphenylphosphorane, prepared froc methyleriphen ${ }_{i}$ Iphosphoníum broonide ($1.7 \mathrm{~g}, 0.005$ mol) and n-Buli (0.005 mol) in IHP (5 ml) under nitrogen, vss added dropurise at room temperature with mappetic stirring PbSeBr- $0.59_{g}, 0.0025 \mathrm{moL}$ in THF (3 mI). An orange solution containing
reaction flask by means of a 45° curved tube charged with glass wool, and the ketone (0.0025 mol) added dropwise at room temperature. A crystalline precipitate formed ingtantaneously which after stirring for 1 hr was removed by filtration. The yellosish filtrate was vashed with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and NaCl , dried with MgSO_{4} and evaporated. The reaction mixture also can be diluted with petroleum - ether (30-50), the solvent decanted and the process repeated three times. The organic Eraction was uashed, dried and evaporated giving the product in the same gield but with increased facility of extraction and distillation. The residue was discilled it vacuo to give the 2-phenylselenoketone in the yield indicated in the Table.

The crystalline precipitates vere identified separately
as being the phosphonium salt (IV) by mixed mp and NR spectra. In the run sith acetophenone, the crude product contained traces of 2-phenylpropene (IX), as shown by NR comparison with an auchentic sample.
b) From the seienophosphonium salt (II)

To (selenophenyl)methylphenylphosphonium bromide (1.28g, 0.0025 mol)
in IHF (5 ml) was added dropwise n-Buli (0.0025 nol) under nitrogen at rocm temperature with magnetic stirring. The ketone was added and the reaction performed as described in (a).

2) 2-phenylselenocyciohexanone (vi) from cyclohexanone

Lithium diisopropylamide was prepared from diisopropylemine ($1.01 \mathrm{~g}, 0.01 \mathrm{~mol}$) in THP (10 ml) and che equivalent amornt of n-Buli, under nitrogen (0°. 15. min.). To this solution, cooled to -78. was added cyclohexanone ($0.98 \mathrm{~g}, 0.01 \mathrm{~mol}$), and after $15 \mathrm{~min}, \mathrm{PhSeBr}(2.36 \mathrm{~g}, 0.01$ mol) in THF (5 ml). After 30 min. at -78°, the solution was diluted with petroleum ether $(30-50)(25$ mi), the solvenc decanted, and the process was repeated chree times. The organic layer was washed vith saturated aqueous NH, CI, aqueous hacl. dried (HgSO_{4}) and evaporated. The crude residue vas distilled in vacuo,
 vere identical with those of che product frame phöphoranes (III) \&ina

```
cyclohexanone, and the data can be found in the Table with analytical data.
3) Reaction of cyclohexanone enolate (VII) with the selenophosphonium salt (II, R=H)
    The cyclohexanone enolate (0.001 mole) was prepared as
described in the preceding experiment. The solid salt (II; R=H) (0.512 g).
O.001 mol) was added at rom temperature to this solution under mitrogen.
After stirring for l hr, the crystalline precipitate which formed was removed
by filtration (TU, R=H), (yleld 0.35g, 100Z, mp and NMR spectrum identical
with those of an authentic sample) Normal work-up of the filtrate gave (VI):
yleld 0.20g (80%).
4) Reaction of phosphorane (I, R=H) with 2-phenylselenocyclohexanone (VI)
    Methylenetriphenylphosphorane was prepared from methyltrifzenyl-
phosphonivm bromide (0.714g, 0.002 mol) and n-Buli (0.002 mol) in THE (10 m1),
under nitrogen To this solution was added 2-phenylselenocyclohexanone (0 50g,
0 002 mol) at room temperature. The crystalline precipitate which formed
was removed by filtration (IV; R=H), (yield 0 7lg, 100%, m.p and NMR rdentical
with those of an authentic sample). Normal work-up of the filtrate gave (VI),
yzeld 0.40g (80%)
```

5) Reaction of acetophenone enolate with methyltriphosphonium bromide
To the enolate prepared from iPr 2 NLi (1 equiv) and acetophenone
($0.120 \mathrm{~g}, 0.001^{-}$mole) in THF (20 ml), was added methyltriphenylphosphonium
bromide ($0.357 \mathrm{~g}, 0.001$ mole) at room temperature under nitrogen, and the
mixture was allowed to react for $24 h$ at room temperature. After normal
work-up, 2-phenylpropene was indicated $2 n$ the crude product by the
follorngg NMR peaks; $\delta\left(\operatorname{CCl}_{4}\right) 2.10,5.01$ and 5.31. Repetition of the
reaction (reflux 1.56) perqitted the isolation by preparative than layer

	yiold (z)	ANALYSES			NMR (δ)	$\underset{v c=0}{\operatorname{zr}\left(\mathrm{film}_{\mathrm{c}}\right)\left(\mathrm{cm}^{-1}\right) \star \star}$
		bp	$\begin{gathered} \text { Found\% } \\ \text { (calcd, } \% \\ c \end{gathered}$	$\begin{gathered} \text { Found\% } \\ \text { (calce, }) \% \\ \mathrm{H} \end{gathered}$		
	$63^{\text {b }}$	$110^{\circ}(0.01 \mathrm{~mm})$	55.00	5.22	1.75-2.60 (m, 611)	1719
			(55.26)	(5.01)	$3.53-3.80(m, 1 H)$ $7.10-70(\mathrm{~m}, 5 \mathrm{H})$	
	$80^{\text {a }}$	$100^{\circ}(0.001 \mathrm{~mm})$	57.04	5.77	140-3.20 (m, 8H)	1700
			(56.95)	(5.53)	$\begin{aligned} & 365-3.90(\mathrm{~m}, 1 \mathrm{H}) \\ & 7.00-7.60(\mathrm{~m}, 5 \mathrm{H}) \end{aligned}$	
	59	$120^{\circ}(0.005 \mathrm{~mm})$	58.16	5.89	096-2.96 (m,10H)	1682
	$59^{\text {b }}$		(58.45)	(5.99)	$\begin{aligned} & 3.69(\mathrm{dd}, \mathrm{Jol10}, \mathrm{~Hz}, \mathrm{HH}) \\ & 7.10-7.63(\mathrm{~m}, 5 \mathrm{H}) \end{aligned}$	
	$57^{\text {a }}$	$125^{\circ}(0.001 \mathrm{~mm})$	$\begin{gathered} 60.20 \\ (59.81) \end{gathered}$	$\begin{gathered} 673 \\ (6.40) \end{gathered}$	$\begin{aligned} & 090-3.03(\mathrm{~m}, 12 \mathrm{H}) \\ & 3.60(\mathrm{dd}, \mathrm{~J}=7,7 \mathrm{~Hz}, \mathrm{H}) \\ & 7.03-7.60(\mathrm{~m}, 5 \mathrm{H}) \end{aligned}$	1704
		$140-5^{\circ}$ (0.001mm)	$\begin{gathered} 61.17 \\ (61.12) \end{gathered}$	$\begin{aligned} & 4.45 \\ & (436) \end{aligned}$	$\begin{aligned} & 4.05(\mathrm{~s}, 2 \mathrm{H}) \\ & 7.08-7.96(\mathrm{~m}, 10 \mathrm{H}) \end{aligned}$	1656
	40^{a}	$60-5^{\circ}(0.05 \mathrm{~mm})$	50.76	4.95	2.20 ($5,3 \mathrm{~K}$)	1700
			(50.73)	(4 69)		

ACFNOWLEDGEMENT

We would like to thank the following agencies for financial support CONSELHO RACIONAL DE DESENVOLVIMENTO CIEATIFICO E TECNOLOGICO, FUNDAÇĀO dE AHPARO A PESQUISA DO ESTADO DE SÃO PAULO, NATIONAL ACADEMY OF SCIEACES, NATIONAL SCIENCE FOUNDATION, AGENCY FOR IHTERNATIONAL DEVELOFMEKT AKD AILANTIC RICHFIELD OF BRASIL

RERERENCES

1 V Petragnani, R Rodrigues and $J V$ Comasseto, J. Organomet Chem, 114(1976)281

2 S G Levine, J. Amer. Chem. Soc, 80(1958)6150
3. G. Wittig and M Schlosser, Chen. Bere, 94 (1961)1373.
4. G. Wittig. W Boli and K.H Kruck, Chem Ber, 95(1962)2514
5. T Kukaiyama, S. Fukuyama and T. Kumamoto, Tetrahedron Lect, (1968)3787.

6 K Scbmldbaur and H. Sedhler, Angew. Chen. Int. Ed. Engl, 12(1973)321.

7 T J. Brocksom, N. Petragmani and R Rodrigies, J Org Chem., 39 (1974)2114

8 H J. Rezch, J.M. Renga and I.L. Rezch. J Am Chem Soc. 97(1975)5434.
9 K. Issieib and R. Lindler, Ann. Chem, 707 (1967)120
10. H. Schmidbdur and W. Tronich, Chem. Ber.. 101(1968)595.

11 E Schmodbaur and W. Malzsch, Chem. Ber, 104(1971)150.
12 E E Schweizer and S V. de DeVoe, J. Org. Chem, 40(1975)144, and reference cited.
13. J. Gosselck, Angew. Chem. Inc. Ed. Engl. 2(1963)660.
14. E J. Corey and J.I. Shulman, J. Org. Chem., 35(1970)777, and references cited.

[^0]: Introduction In a preceding paper [I] ve reported the preparation of triphenylselenophosphoranes (III) via transylıdation between alkylidenephosphoranes (I) and PhSeBr, or by dehydrohalogenation of the corresponding seletophosphonium salts (II). The Wittig reaction of the selenophosphoranes with aliphatic and aromatic aldehydes produced the expected vanylic selenides, which then could be kyirolysed to the corresponding carbonyl compouside

[^1]:

